Sensitivity analyses for trials with missing data, assuming missing not at random mechanisms
نویسندگان
چکیده
In randomised trials with missing data, it is not uncommon for the observation of the outcome to depend on the outcome itself. For example in behavioural trials on smoking cessation, weight loss, or alcohol reduction, unsuccessful participants may be less willing to disclose their outcome than those that are more successful. These Missing Not At Random (MNAR) data are problematic because they can bias the estimate of the treatment effect, and because the observed data do not provide any information on the likelihood of such a mechanism. Trialists in each field tend to favour one approach regarding missing data. For example in smoking cessation trials non-responders are usually assumed to be still smoking, or in weight loss trials, baseline or last observation carried forward are typically used. The assumptions made for each of these analyses, and the extent to which departure from these assumptions could affect the trial results, are often ignored. We propose a simple technique to perform sensitivity analyses of randomised trials where MNAR outcomes are expected. It is based on a a-priori discussion with investigators regarding the plausible missing data mechanisms, and an evaluation of the treatment effect under scenarios covering a range of assumptions, including possible difference in mechanism between arms. Results under each assumption are tabulated alongside indicators of the plausibility of each assumption. We will discuss the application of this approach as applied to two recent large trials, one in smoking cessation, and one in alcohol use. In both instances, this approach offered a more robust interpretation of the trial finding. Authors’ details UCL PRIMENT CTU, London, UK. UCL Department of Primary Care and Population Health, London, UK. MRC Biostatistics Unit, Cambridge, UK. Centre for Mental Health, Imperial College London, London, UK.
منابع مشابه
A Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses
A transition binary logistic model with random coefficients is proposed to model the unemployment statues of household members in two seasons of spring and summer. Data correspond to the labor force survey performed by Statistical Center of Iran in 2006. This model is introduced to take into account two kinds of correlation in the data one due to the longitudinal nature o...
متن کاملDealing with missing outcome data in randomized trials and observational studies.
Although missing outcome data are an important problem in randomized trials and observational studies, methods to address this issue can be difficult to apply. Using simulated data, the authors compared 3 methods to handle missing outcome data: 1) complete case analysis; 2) single imputation; and 3) multiple imputation (all 3 with and without covariate adjustment). Simulated scenarios focused o...
متن کاملAnalyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data
Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate missing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustment procedure and demonstrate how it can be used to assess sensitivity to departures from MAR, bot...
متن کاملMissing data and multiple imputation in clinical epidemiological research
Missing data are ubiquitous in clinical epidemiological research. Individuals with missing data may differ from those with no missing data in terms of the outcome of interest and prognosis in general. Missing data are often categorized into the following three types: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). In clinical epidemiological resea...
متن کاملA latent-class mixture model for incomplete longitudinal Gaussian data.
In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in pract...
متن کامل